

SUBJECT and GRADE	Physical Sciences; Grade 11
TERM 1	Week 6
TOPIC	Newton's second law of motion.
AIM OF LESSON	 At the end of this lesson you should be familiar with the following: Apply Newton's second law of motion to a variety of equilibrium and non-equilibrium problems including Two-body systems (joined by a light inextensible string): Both on a flat horizontal plane with or without friction One in a horizontal plane with or without friction, and a second hanging vertically from a string over a frictionless pulley Both on an inclined plane with or without friction Both hanging vertically from a string over a frictionless pulley
RESOURCES	 Paper-based / physical resources Prescribed CAPS Physical Sciences textbook, Siyavula Grade 11 Physical Sciences resource (learner book, pg. 77 - 123); Physical Sciences CAPS document (pg. 64 - 65); and Grade 11 Physical Sciences Examination Guideline (pg. 8 - 9). Additional subject-related material, e.g. Mind the Gap (pg 19 – 26), Science Clinic, Answer Series, etc.). Scientific calculator, ruler, pen and pencil.

	 Digital resources Technological devices such as a cell phone, tablet, laptop, etc. and sufficient data would be very useful. WCED ePortal – Website links to access recommended platforms: <u>https://wcedeportal.co.za/eresource/189921</u> Siyavula links (Forces): <u>https://intl.siyavula.com/read/science/grade-11/newtons-laws/02-newtons-laws-02</u> Youtube videos: <u>https://www.youtube.com/watch?v=kKKM8Y-u7ds;</u> <u>https://www.youtube.com/watch?v=zxvBSQx3SYg</u> Mind the Gap: <u>https://www.education.gov.za/Curriculum/LearningandTeachingSupportMaterials(LTSM)/MindtheGapStudyGui</u>
	<u>des.aspx</u>
INTRODUCTION	Use the following link to enhance your knowledge by watching the video which summarizes Newton's laws and bringing it into perspective.
CONCEPTS AND SKILLS	This section must be read in conjunction with the CAPS, pg. 64 - 65. 1. NEWTON'S SECOND LAW OF MOTION

Recapping from the previous lesson, Newton's Second law of motion is an acceleration relationship. Can you recall that the <u>acceleration</u> of the block is <u>directly proportional</u> to the <u>resultant (net) force</u>. In mathematical terms: $a \propto F$ ------(1) AND

the <u>acceleration</u> is <u>inversely proportional</u> to the <u>mass</u>. In mathematical terms: $a \propto 1/m$ ------(2)

The following is obtained when rearranging equation (1) and (2)

 $a \propto \frac{F}{m}$ or $F_{net} = ma$

Remember that both force and acceleration are vectors quantities. The acceleration is in the same direction as the net (resultant) force and <u>not necessarily in the same direction as the motion of the object</u>. If multiple forces are acting simultaneously then we only need to work with the resultant force or net force.

Recall the <u>definition of Newton's second law of motion</u> (this is examinable and is asked almost every year in the final exam.)

DEFINITION: If a <u>resultant (net)</u> force acts on a body, it will cause the body to <u>accelerate in the direction of the resultant</u> force. The <u>acceleration</u> of the body will be <u>directly proportional to the resultant force</u> and <u>inversely proportional to the</u> <u>mass</u> of the body.

Applying Newton's second law of motion

Newton's second law can be applied to a variety of situations. Before working through the following examples, go through Mind the Gap pages 19 – 26.

2.4

However, the vertical forces must only be considered when you need to calculate friction force, given the coefficient of friction.

Step 2: Calculate the acceleration of the box. Remember that we consider the y- and x-directions separately.

EXAMPLE 3

In the diagram below, a small object of mass 2 kg is sliding <u>at a constant velocity</u> of 1,5 m·s⁻¹ down a rough plane inclined at 7° to the horizontal surface.

At the bottom of the plane, the object continues sliding onto the rough horizontal surface and eventually comes to a stop.

The coefficient of kinetic friction between the object and the surface is the same for both the inclined surface and the horizontal surface

3.1	Write down the magnitude of the net force acting on the object.	(1)
3.2	Draw a labelled free-body diagram for the object while it is on the inclined plane.	(3)
3.3	Calculate the	
	3.3.1 Magnitude of the frictional force acting on the object while it is sliding down the inclined plane.	(3)
	3.3.2 Coefficient of kinetic friction between the object and the surfaces.	(3)
	3.3.3 Distance the object travels on the horizontal surface before it comes to a stop.	(5)
ANS	SWER TO EXAMPLE 3	
3.1	0 N/zero/nul✓ (1)	

1.2 A constant horizontal force **F** is applied to a box resting on a horizontal, frictionless surface. Which ONE of the following statements regarding force **F** is CORRECT?

Force **F** will cause the box to move with ...

- A constant acceleration.
- B constant velocity.
- **C** constant kinetic energy.
- D constant momentum.

(2)

1.3 The diagram below shows three blocks, P, Q and R, suspended from a ceiling. The blocks are *identical*, *stationary* and have the same mass but are at different heights above the ground. The connecting strings are massless and inextensible. The tensions in the strings attached to blocks P, Q and R are T_P, T_Q and T_R respectively

ground

QUESTION 2

A learner constructs a push toy using two blocks with masses 1,5 kg and 3 kg respectively. The blocks are connected by a massless, inextensible cord

The learner then applies a force of 25 N at an angle of 30° to the 1,5 kg block by means of a light rigid rod, causing the toy to move across a flat, rough, horizontal surface, as shown in the diagram below. The coefficient of kinetic friction (μ_k) between the surface and each block is 0,15

(3)
(\mathbf{J})
(5)
(3)
(5)

QUESTION 3

The diagram below shows a 10 kg block lying on a flat, rough, horizontal surface of a table. The block is connected by a light, inextensible string to a 2 kg block hanging over the side of the table. The string runs over a light, frictionless pulley. The blocks are **stationary**

CONSOLIDATION	Summary of lesson content, which you should be familiar with at this stage:						
	• State Newton's second law of motion: When a resultant/net force acts on an object, the object will accelerate in						
	the direction of the force at an acceleration directly proportional to the force and inversely proportional to the						
	<u>object's mass</u> .						
	• Draw force diagrams and free-body diagrams for objects that are in equilibrium or accelerating.						
	• Apply Newton's second law of motion to a variety of equilibrium and non-equilibrium problems, including: a single						
	object; and two-body systems.						
	• NOTE: When an object accelerates, the equation F_{net} = ma must be applied separately in the x and y directions. If						
	there is more than one object, a free-body diagram must be drawn for each object and Newton's second law must						
	be applied to each object separately. Separate equations set up for each object and the two equations solved						
	simultaneously.						
	ANSWERS TO EXERCISES FOR CONSOLIDATION						
	QUESTION 1						
	1.1 D						
	1.2 A						
	1.3 C						
	1.4 A						

		Acce	pted Labels/Aanvaarde benoel	mings		
			F _{g/} F _w /force of Earth on block/weight/gravitational force			
		W	$F_{g/}F_{w}/krag$ van Aarde op blok	/gewig/gro	nvitasiekrag	
			F _N /F _{normal} /normal force			
		N	F _N /F _{normaal} /normalekrag			
			Tension/F _T			
			Spanning/F _T			
		f _k	fkinetic friction/kinetiesewrywing/ff/w/f//Ff/wkinetic friction/kinetiesewrywing			
			Fapplied/FA/F			
		25 N	F _{toegepas} /F _A /F			
	2.4.1	<u>OPTIO</u>	N 1/OPSIE 1	OPTION	2/OPSIE 2	
		$f_k = \mu_k$	N = µk(25sin 30° + mg)	$f_k = \mu_k N =$	= μ _k (25cos 60° + mg)	
		= 0,1	5[<u>(25sin30°)</u> ✓ + <u>(1,5)(9,8)</u> √]	= 0,15[(25cos60°)✓ + (1,5)(9,8)√]	
		= 4,0	8 N√	= 4,08	N✓	(3)
	2.4.2	POSITI	VE MARKING FROM			
		QUEST	ION 2.2 AND QUESTION 2.4.1			
		POSITI	EWE NASIEN VANAF VRAAG 2.2	EN VRAAG		
		2.4.1				
		OPTIO	<u>N 1/OPSIE 1</u>			
		For the 1,5 kg block/Vir die 1,5 kg blok				
		F _{net} = I	ma 👌			
			·			

 $F_x + (-T) + (-f_k) = ma$
 $25 \cos 30^\circ - T - f_k = 1,5a$
 $(25 \cos 30^\circ - T) - 4,08 = 1,5a$

 17,571 - T = 1,5a

 13,161 = 4,5a

 a = 2,925 ms⁻²

 T = 13,19 N \checkmark

QUESTION 3

3.1 A body will remain in its state of rest or continues at constant velocity in a straight line unless a non-zero resultant/net force

acts on it

'n Liggaam sal in sy toestand van rus of beweging teen konstante snelheid 'n 'n reguitlyn bly tensy 'n nie-nul resulterende/netto krag daarop inwerk

	3.5	Smaller than/Kleiner as ✓	(1)			
	3.6	Remains the same/Bly dieselfde ✓				
		The coefficient of kinetic friction is independent of the surface areas in contact.				
		Die kinetiese wrywingskoëffisiënt is onafhanklik van die oppervlakareas				
		waarmee in kontak is				
		OR/OF				
		The coefficient of kinetic friction depends only on the type of materials used or				
		the weight.✓				
		Die kinetiese wrywingskoëffisiënt hang slegs af van die tipe materiaal gebruik				
		of die gewig	(2)			
VALUES /	Value o	of Newtons laws of motion in everyday practices.				
APPLICATIONS	Visit the	it the following weblink and watch the video illustrating the value of using Newton's laws of motion to explain some of				
IN PRACTICE	the act	e activities we are engaged with in our daily lives, which include understanding:				
	<u>1</u> •	Newton's first law and inertia when swinging, ice skating and cycling.				
	• Newton's second law when vehicles suddenly stop and the movement (acceleration) of objects with diffe					
	r	masses.				
	<u>1</u> •	Newton's third law and action-reaction force pairs in activities concerned with bou	uncing balls, jumping, walking,			
	0	and cycling.				
		A look into real-life applications of Newton's laws:				
		https://www.youtube.com/watch?v=zxvBSQx3SYg				