

Education

SUBJECT and	Physical Sciences Grade 11		
GRADE			
TERM 1	Week 2		
TOPIC	Vectors in two dimensions		
AIMS OF LESSON	At the end of this lesson you should be able to:		
	 Calculate the magnitude of the resultant using the theorem of Pythagoras. 		
	Determine the direction of the resultant using simple trigonometric ratios		
	Determine the resultant (R) of two vectors graphically using either the tail-to-head		
	• or tail-to-tail method (parallelogram method) as well as by calculation (component method).		
	Explain the meaning of a closed vector a	liagram.	
RESOURCES	Paper based resources	Digital resources	
	Text books, pen, pencil; ruler ;protractor and	See simulation: 23FV at <u>www.everythingscience.co.za</u>	
	paper.	See video: 23FW at www.everythingscience.co.za	
INTRODUCTION	Revise Gr.10 work on vectors and first week concepts		
	 we will take these concepts further and le vectors. 	earn about vectors in two dimensions as well as components of	
CONCEPTS AND	Key Mathematics Concepts that is key in order to grasp the topic		
SKILLS			
	Theorem of Pythagoras — Mathematics, Grade 10, Analytical geometry		
	Units and unit conversions — Physical Sciences, Grade 10, Science skills		
	Equations — Mathematics, Grade 10, Equations and inequalities		
	Trigonometry — Mathematics, Grade 10, Trigonometry		
	Graphs — Mathematics, Grade 10, Functions and graphs		

Vectors in 2D

RESOLVING INTO COMPONENTS

Diagonal vectors can be broken into components. When vectors are broken into the x- and y-component s, we are determining the horizontal (x-axis) and vertical (y-axis) effect of the vector.

COMPONENTS ON A SLOPE

When forces act on objects on a slope, it is useful to resolve vectors into components that are parallel (//) or perpendicular (\perp) components.

The most common force resolved into components on a slope is weight (Fg).

Tail-to-head Method

Used for consecutive vectors (vectors that occur in sequence). Eg. A boat travels 90 m east, and then moves 50 m north.

This principle can also be applied to more than 2 vectors taken in order. The resultant is from the tail of the first vector to the head of the last

PYTHAGORAS (90° ONLY)

Pythagoras can only be applied to vector triangles that are right angle triangles.

EXAMPLE:

A boat travels 90 m due east, and then moves 50 m due north. Determine the displacement of the boat.

COMPONENT ADDITION

The resultant of diagonal forces can be determined using Pythagoras by determining the x-resultant and yresultant first. This is especially useful for determining resultants when more than 2 forces act on an object and a force triangle cannot be used.

Steps to determine resultant using component method:

Determine the x- and y-components of each force.
 Determine the x- and y-resultants of components.
 Determine the resultant using Pythagoras.
 Determine the angle using trigonometric principles

EXAMPLE:

Three forces act on an object as shown in the diagram below. Determine the resultant force on the object.

STEP 1 : DETERMINE THE X-AND Y COMPONENT OF EACH FORCE

1. 11N force: $Fx = F \cos \theta$ $= 11 \cos 70$ = 3,76 N right $Fy = F \sin \theta$ $= 11 \sin 70$ = 10,34 N up **30N force:** $Fx = F \cos \theta$ $= 30 \cos 40$

= 30 cos 40 = 22,98 N left $Fy = F \sin \theta$ = 30 sin 40 = 19,28 N down

20N force: $Fx = F \cos \theta$ = 20 cos 35 2,84 N = 16,38 N right $Fy = F \sin \theta$ = 20 sin 35 = 11,47 N down 20,41 NSTEP 2. DETERMINE THE x- and y-resultant R Fx = -3,76 + 22,98 - 16,38 = 2,84 N left Fy = -10,34 + 19,28 + 11,47= 20,41 N down STEP 3.CALCULATE THE Resultant & 4. Angle R2 = x2 + y2R = 2.842 + 20.412R = 20,61 N $\tan \theta = oa$ $\theta = \tan(-1, 20, 41)$ 2,84 $\theta = 82,08$ ° ∴Resultant = 20,61 N at a bearing of 187,92° (The equilibrant will be 20,61 N at a bearing of 7,92°)

	2. In the diagram below there are 4 vectors that also form a closed vector diagram		
	↑ y		
	$4 + \vec{F}_2$		
	3 -		
	$\vec{F_1}$ $\vec{F_3}$ $\vec{F_3}$		
	-3 +		
	-4 +		
	\succ In this case with 4 vectors, the shape is a 4-sided polygon.		
	Any polygon made up of vectors drawn tail-to-head will be a closed vector diagram because a		
	polygon has no gaps.		
ACTIVITIES/	ACTIVITY 1		
ASSESSMENT	1.Find the resultant in the x-direction, Rx, and y-direction, Ry for the following forces:		
	a) $F1 = 4,8$ N in the positive x-direction		
	b) $F2 = 3,2$ N in the negative x-direction		
	c) $F3 = 1,9$ N in the positive y-direction		
	d) $F4 = 2,1$ N in the negative y-direction		
	2.Sketch the resultant of the following force vectors using the tail-to-head method: a) $F1 = 4.8$ N in the positive v-direction		
	b) $F2 = 3,3$ N in the negative x-direction		
	ACTIVITY		
	3.Sketch the resultant of the following force vectors using the tail-to-head method by first determining the		
	resultant in the x- and y-directions:		

	a) $F1 = 5,2$ N in the positive y-direction	
	b) $F2 = 7,5$ N in the negative y-direction	
	c) $F3 = 4.8$ N in the positive y-direction	
	d) $F4 = 6.3$ N in the negative x-direction	
	4. Four forces act simultaneously at a point, find the resultant if the forces are:	
	a) $F1 = 2,3$ N in the positive x-direction	
	b) $F2 = 4,9$ N in the positive y-direction	
	c) $F3 = 4,3$ N in the negative y-direction	
	d) $F4 = 3,1$ N in the negative y-direction	
	13. Resolve each of the following vectors into components:	
	a) F1=105 N at 23,5_ to the positive x-axis.	
	b) F2=27 N at 58,9_ to the positive x-axis.	
	c) F3=11,3 N at 323_ to the positive x-axis.	
CONSOLIDATION	SUMMARY	
	Vectors can be added graphically using the head-to-tail method or the tail-to-tail	
	method.	
	A closed vector diagram is a set of vectors drawn on the Cartesian using the tail-to-head method and	
	that has a resultant with a magnitude of zero.	
	Vectors can be added algebraically using Pythagoras' theorem or using components.	
	The direction of a vector can be found using simple trigonometric calculations.	
	The components of a vector are a series of vectors that, when combined, give the original vector as their resultant.	
	Components are usually created that alian with the Cartesian coordinate axes.	
	For a vector F that makes an anale of with the positive x-axis the x-component is $Rx = R\cos(\theta)$ and the y-	
	component is $Ry = Rsin(\theta)$.	
VALUES	Different actions in your daily life will have more than one outcome. Your actions impact on other people in	
	the system.	
	You can apply the principle of vectors in sport, workplace and in the medical field when you do eye tests et.	
	Accurate measurement is an important skill in vectors.	