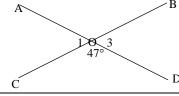


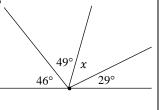
SUBJECT and GRADE	Mathematics Grade 10		
TERM 1	Week 7: EUCLIDEAN GEOMETRY		
TOPIC	Revision Grade 9		
AIMS OF LESSON	To understand and apply the theore	ems in Geometry	
RESOURCES	Paper based resources	Digital resources	
	Please refer to the chapter in your textbook on Euclidean Geometry	https://www.youtube.com/watch?v=WK5w3_e2v0s; https://www.youtube.com/watch?v=00Mwp2W8jnU https://www.youtube.com/watch?v=p6w1JBLS-Tk; https://www.youtube.com/watch?v=jWHOF6cFbpw https://www.youtube.com/watch?v=w8T6Lkmo-T0; https://www.youtube.com/watch?v=r7m424e3Kdc https://www.youtube.com/watch?v=n44WDrtzppM	
INTRODUCTION	In this lesson we will revise Gr 9 Geometry.		
CONCEPTS/ SKILLS	 Parallel Lines, alternate, corresponding and co-interior angles Revising Angles Identification of Different Triangles The Difference between Congruency and Similarity The Practice of Logical Reasoning 		
Lesson 1 + 2	Revision of Gr 9 Geometry: Lines and angles		

1. Lines and Angles ($\angle s$):


Type of ∠	Acute ∠:	Right ∠:	Obtuse ∠:	Straight ∠:	Reflex ∠:	Revolution:
Size	Between	= 90°	Between	= 180°	Between	= 360°
	0° and 90°		90° and 180°		180° and 360°	
Example	34°		147°		308°	

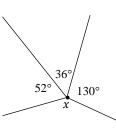
Theorems on lines and angles:

1. If 2 lines intersect each other, then the pairs of **vertically opposite** angles are equal

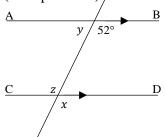

Example: In the figure:

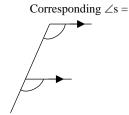
Statement	Reason	
$A\widehat{O}B = 47^{\circ}$	vertically opp.	
and $\widehat{\mathbf{O}}_1 = \widehat{\mathbf{O}}_3$	vertically opp.	

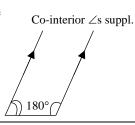
2. The sum of **angles on a straight line** = 180° .

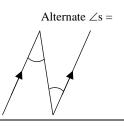

Statement	Reason
$x + 46^{\circ} + 49^{\circ} + 29^{\circ} = 180^{\circ}$	∠s on straight
	line
$x = 180^{\circ} - 124^{\circ}$	
$\therefore x = 56^{\circ}$	

- 2 angles that add up to 90° , are **complementary** \angle s
- 2 angles that add up to 180°, are (Adjacent) supplementary ∠s
- Lines that intersect at right ∠s (90°), are **perpendicular** (⊥) on each other
- 3. The sum of angles around a point = 360°

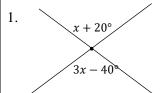

Example: Find the value of x in the diagram:


Statement	Reason
$x + 52^{\circ} + 36^{\circ} + 130^{\circ} = 360^{\circ}$	∠s around point
	OR revolution
$x = 360^{\circ} - 218^{\circ}$	
$\therefore x = 142^{\circ}$	



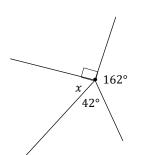

- 4. When 2 **parallel lines** are cut by a transversal:
 - The pairs of **corresponding** \angle **s** are **equal**
 - The pairs of alternate ∠s are equal and
 - The **co-interior** ∠**s** are **supplementary** (add up to 180°) /

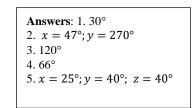
Statement	Reason
$x = 52^{\circ}$	Corresp. ∠s; AB//CD
$z = 52^{\circ}$	Alternate ∠s; AB//CD
$y + z = 180^{\circ}$	Co-int. ∠s; AB//CD

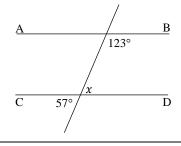


CAN YOU?

Determine, with reasons, the value of the letters:


2.


4.



3. 180°-x

6. Prove that AB//CD

Lesson 3+4

Revision: Gr 9 Geometry: Triangles

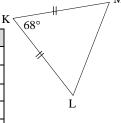
2. Triangles (Δs):

Type of ∆	Scalene Δ:	Acute Δ:	Right-angled Δ :	Obtuse Δ:	Isosceles Δ:	Equilateral Δ:
	No equal	All angles are	1 ∠ equal 90°;	1 angle is	2 equal	All 3 sides
	$sides \Rightarrow$	acute (< 90°)	the other 2 are	obtuse (> 90°)	$sides \Rightarrow$	equal
	no equal ∠s		acute		2 equal ∠s	⇒ all ∠s are
			(Pythagoras)		opposite	equal to 60°
					equal sides	
Example	***					

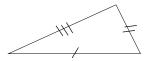
- The smallest \angle is opposite the shortest side
- The longest side (opposite the right \angle) in a right-angled Δ is called the hypotenuse
- There can be only 1 obtuse angle or right angle in a Δ

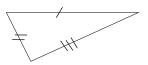
Theorems on Δs :

- 1. The sum of the interior angles of a triangle is 180° (int. \angle s of Δ)
- 23° x y 72°
- 2. The exterior angle of a triangle is equal to the sum of the 2 opposite interior angles (ext. \angle of \triangle)

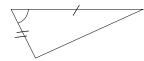

Example: Determine, with reasons, the size of x and y:

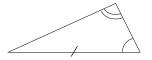
Statement	Reason
$x + 23^{\circ} = 72^{\circ}$	Ext. \angle of Δ
$\therefore x = 49^{\circ}$	
$y + x + 23^{\circ} = 180^{\circ}$	Int. \angle s of Δ
$\therefore y + 49^{\circ} = 180^{\circ}$	
∴ <i>y</i> = 131°	

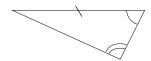

- 3. In an isosceles triangle:
 - The angles opposite the 2 equal sides are equal (\angle s opp. = sides) **OR**
 - The sides opposite the 2 equal angles are equal (sides opp. $= \angle s$)

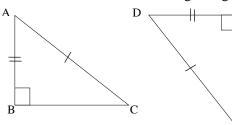

Example: Determine the size of KML, with reasons:

Statement	Reason
$K\widehat{M}L = K\widehat{L}M$	\angle s opp. = sides
$K\widehat{M}L + K\widehat{L}M + 68^{\circ} = 180^{\circ}$	Int. \angle s of Δ
$\therefore 2K\widehat{M}L + 68^{\circ} = 180^{\circ}$	
∴2KML = 112°	
∴KML = 56°	

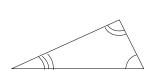

- 4. 2 triangles are **congruent** (\equiv) if:
 - 3 sides of 1 Δ is equal to 3 sides of another Δ (s, s, s)

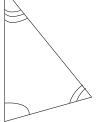



• 2 sides and the **included** \angle of 1 Δ is equal to 2 sides and the included \angle of another Δ (s, \angle , s)



• $2 \angle s$ and a side of 1Δ is equal to $2 \angle s$ and the **corresponding** side of another $\Delta (\angle, \angle, s)$

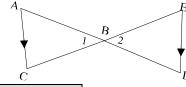

• The **hypotenuse and a side** of a right-angled Δ is equal to, The hypotenuse and a side of another right-angled Δ (90°, h, s)



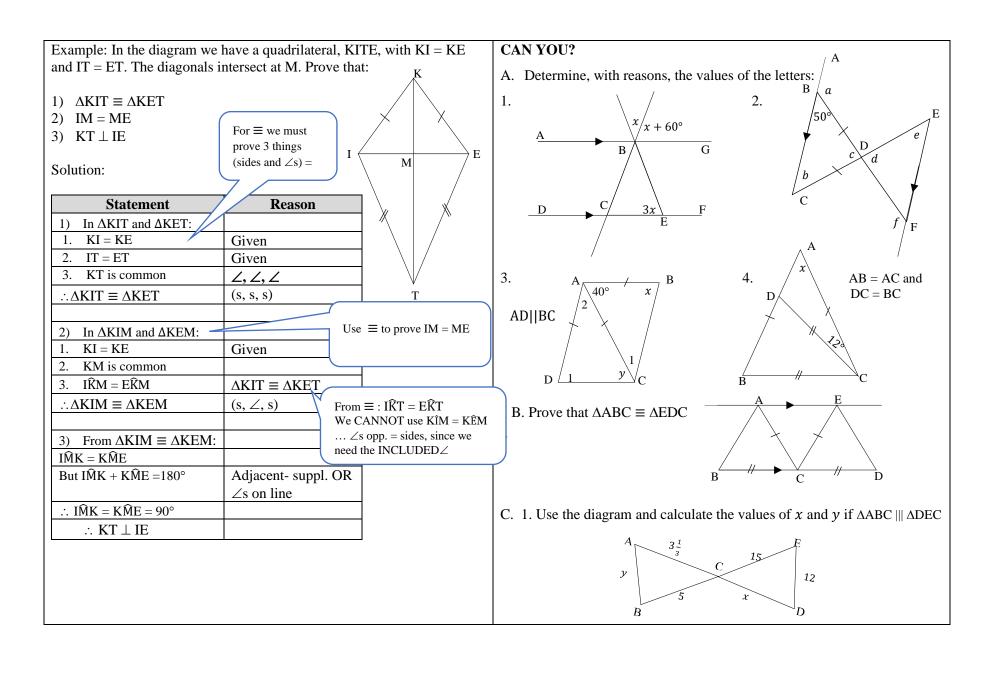
Write the equal ∠s in corresponding places (usually given so in question)

Congruency means equal in size (length of sides) and equal in form (size of \angle s) \therefore if $\triangle ABC \equiv \triangle DEF \Rightarrow \widehat{A} = \widehat{D}, \widehat{B} = \widehat{E}$ and $\widehat{C} = \widehat{F}$. Also AB = DE, AC = DF and BC = EF

- 5. 2 triangles are **similar** (|||) if:
- they are **equiangular** $(3 \angle s \text{ of } 1 \Delta \text{ is equal to } 3 \angle s \text{ of other } \Delta) (\angle, \angle, \angle)$
- their corresponding sides are in proportion (sides in prop.)
- 2 sides are in proportion and included ∠s are equal (2 sides and incl. ∠)



- Similar Δs are only equal in form (size of $\angle s$)
- The corresponding sides are in proportion: If $\triangle ABC \parallel \triangle DEF (\widehat{A} = \widehat{D}, \widehat{B} = \widehat{E} \text{ and } \widehat{C} = \widehat{F})$, then: $\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$


Example:

- 1) Prove that ΔABC ||| ΔDBE
- 2) If AD = 19, BD = 7, and DE = 21, determine the length of AC

Statement	Reason
1) In \triangle ABC and \triangle DBE:	
1. $\widehat{\mathbf{B}}_1 = \widehat{\mathbf{B}}_2$	Vertically opp.
2. $\widehat{CAB} = \widehat{BDE}$	Alt. ∠s; AC//ED
∴∆ABC ∆DBE	∠,∠,∠
$\therefore \frac{AB}{DB} = \frac{AC}{DE} = \frac{BC}{BE}$	
2) $\frac{AB}{DB} = \frac{AC}{DE}$	From
$\therefore \frac{12}{7} = \frac{AC}{21}$	AB = AD - BD
$\therefore AC = \frac{12 \times 21}{7} = 36$	

For ||| we only need to prove $2 \angle s$ equal in the $2 \Delta s$

Answers:

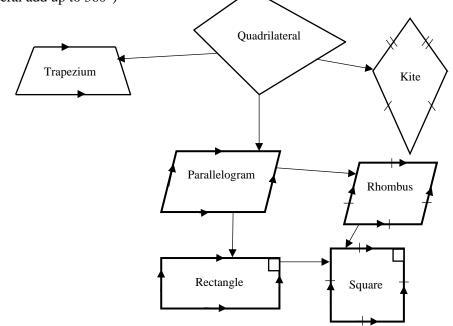
A.

1. 24°

2. $a = 130^{\circ}$; $b = 50^{\circ}$; $c = 80^{\circ}$; $d = 80^{\circ}$; $e = 50^{\circ}$; $f = 130^{\circ}$

3. $x = 70^{\circ}$; $y = 55^{\circ}$

4. 52°


C x = 10; y = 4

Lesson 5 Quadrilaterals

A **Quadrilateral** is any 4-sided figure - the interior angles of a quadrilateral add up to 360°)

CAN YOU? Match each figure with the correct descriptor

Fig	Figure		Descriptor		
1.	square	a) A quadrilateral with two pairs of adjacent sides equal			
2.	rectangle	b)	A quadrilateral with two pairs opposite sides parallel		
3.	rhombus	c)	A quadrilateral with one pair of opposite sides parallel		
4.	quadrilateral	d)	A rectangle with all sides equal and a 90° angle.		
5.	trapezium	e)	A parallelogram with two pairs of parallel sides and a 90° angle.		
6.	parallelogram	f)	A parallelogram with all sides equal		
7.	kite	g)	A quadrilateral is a four-sided figure		

ACTIVITIES	Consider other exercises from your Mathematics Textbook
VALUES	Dear learner. Albert Einstein said: "A person who never made a mistake never tried anything new." Learn from your mistakes
	and become a better you.