

Western Cape Government

Education

SUBJECT and GRADE	Mathematics Grade 10	
TERM 1	Week 4: Exponents, Equations and Inequalities	
TOPIC	Number systems and Exponents	
AIMS OF LESSON	To expose learners to the Real number system and introduce Exponent	is the second
RESOURCES	Paper based resources	
	Please refer to the chapter in your textbook on Number Systems and the	en on Exponents
INTRODUCTION	In this lesson we will start to look at the Real number system in order t	o classify numbers and then move on to work with
	Exponents.	
CONCEPTS/ SKILLS	1. Real numbers, Rational and Irrational numbers	
	2. Exponent laws and rules	
	3. Simplifying exponential expressions	
	4. Solving Exponential equations	
Lesson 1 + 2	The Real number system	
The set of Real Number	rs, R	Example 1: Write 0, 2 as a fraction.
The set is infinite and contains both Rational and Irrational Numbers. Note: $10 = \frac{10}{2}$ which is \mathbb{O}		$0, \dot{2} = 0,222222222 \dots$
Every Real Number can be represented as a point on the number line. $745 = \frac{745}{1}$ which is \mathbb{O}		Let $x = 0,22222222 \dots (1)$
$0, 75 = \frac{1}{1000}$ which is 0		× 10: $\therefore 10x = 2,222222222 \dots (2)$
The Set of Rational Numbers, \mathbb{Q}		$(2) - (1): 10x - x = 2,2222222 \dots - 0,22222222 \dots$
This is an infinite set of numbers that can be written in the form $\frac{1}{b}$, where $\frac{1}{a}$ is UNDEFINED		$\therefore 9x = 2$
both a and b are integers (\mathbb{Z}) and $b \neq 0$ We can NEVER divide by 0.		$\therefore x = \frac{2}{9}$
• e.g.: $-2\frac{2}{3};\frac{45}{32}; 0,132; -12; 1; \sqrt{16}; \sqrt[3]{64}; 2,123; \text{ etc.}$		
\mathbb{Q} is closed under addition, multiplication and subtraction (if you \times , +, or $-\mathbb{Q}$ numbers, your answer will		Example 2: Show that 1, 12 is a Q number.
be a \mathbb{Q} number). This not true for division $\left(\frac{a}{0} \text{ is UNDEFINED}\right)$		$1, \dot{1}\dot{2} = 1,1212121212 \dots$
• All Terminating decimals (0,745) and Recurring numbers (0, 1) are Rational numbers.		Let $x = 1,1212121212 \dots$ (1)
• NOTE: π is not \mathbb{Q} , although $\frac{22}{7}$ and 3,14 are \mathbb{Q} approximated values that we use.		$\times 100: \therefore 100x = 112,12121212$ (2)
		$(2) - (1): 100x - x = 112,12121212 \dots -$
The Set of Irrational Numbers, \mathbb{Q}'		$1,12121212 \dots$ $\cdot 00x - 111$
This is an infinite set of numbers that cannot be written in the form $\stackrel{a}{\rightarrow}$, where both a and b are integers		3.99x - 111
• Eq. $\sqrt{2}: \sqrt[3]{4}: \pi: 0.123$		
 Square roots of numbers i 	that are not perfect squares Look for a perfect square	Example 3: Between which two integers (Z) do $\sqrt{21}$ lie?
 Cube roots of numbers th 	at are not perfect cubes, etc.	16 < 21 < 25
• π	21, which is 16 and 25	$\therefore \sqrt{16} < \sqrt{21} < \sqrt{25}$
		$\therefore 4 < \sqrt{21} < 5 \Rightarrow \sqrt{21}$ lie between 4 and 5

Lesson 4 Simplifying Exponential Expressions	
Simplify the following expressions:	CAN YOU?
Lesson 4Simplifying Exponential ExpressionsSimplify the following expressions:Write 81 as the product of its PRIME factors.Example 1: $81^{\frac{3}{4}}$ Write 81 as the product of its PRIME factors. $= (3^4)^{\frac{3}{4}}$ Write 81 as the product of its PRIME factors. $= 3^{4\times\frac{3}{4}} = 3^3 = 27$ Write each composite base as the product of its PRIME factors. Note the use of brackets to ensure that ALL factors remain under the influence of theSolution: $= \frac{2^{x} \cdot 3^{x-2} \cdot (2 \cdot 3)^{x}}{(2^2)^{x-1} \cdot (3^2)^{x+1}}$ $= \frac{2^{x} \cdot 3^{x-2} \cdot 2^{x} \cdot 3^{x}}{2^{2x-2} \cdot 3^{2x+2}}$ Apply exponential laws 3 and 4 as well as the rules for multiplying a monomial with a polynomial	CAN YOU? Simplify the following expressions: 1. $64^{\frac{2}{3}}$ 2. $\frac{1}{2}$ of 2^{50} 3. $\frac{(2^3.3^2)^2}{2^2.3^3}$ 4. $\frac{(125x^3)^{\frac{1}{3}}}{(5x^{\frac{1}{2}})^2}$ 5. $2^{x}.4^{x+1}.3^{3x-1}$
$= 2^{x+x-(2x-2)} \cdot 3^{x-2+x-(2x+2)} $ (remember?)	5. $\frac{2}{6^{3x-1}}$ 7. $\frac{28}{3}$
$= 2^{x+x-2x+2} \cdot 3^{x-2+x-2x-2}$ Now apply laws 1 and 2 on the powers with the same bases. Note	6. $\frac{18^{x+1}}{2^{x+1} \cdot 9^{x+2}}$ 8. 1 9. $\frac{2}{5}$
$= 2^2 \cdot 3^{-4}$ how we write this using ONLY the 2 bases and the use of	7. $\frac{9^{n+1}+3^{2n-1}}{9^n}$ 10. 8 11. $2^x - 5$
$=\frac{2^2}{3^4}=\frac{4}{81}$ brackets again. Then simplify	8. $\frac{3^{n+4}-6.3^{n+1}}{7.3^{n+2}}$ 12. $\frac{2}{2} = 2^{x-1}$ 13. $3^x - 3$
Example 2: $\frac{3^{x+1}+3^{x-1}}{3^{x+2}-3^x} = \frac{3^{x}\cdot3^1+3^{x}\cdot3^{-1}}{3^{x}\cdot3^2-3^x}$ Note: we cannot apply the exponential laws since the numerator and denominator is not ONE TERM	9. $\frac{2^{x+2}-2^{x+1}}{2^{x}+2^{x+2}}$
$=\frac{3^{\lambda}(3^{1}+3^{-1})}{3^{x}(3^{2}-1)}$ - so we must FACTORISE. Apply law 1 backwards and we have 3 ^x as	$10.\ \frac{5.2^{x}-4.2^{x-2}}{2^{x}-2^{x-1}}$
$= \frac{3^{1}+3^{-1}}{3^{2}-1} = \frac{\frac{10}{3}}{8} = \frac{10}{3} \times \frac{1}{8} = \frac{5}{12}$	$11. \frac{4^{x}-25}{2^{x}+5}$ $12. \frac{4^{x}-2^{x}}{2^{x}+1-2}$
Example 3: $\frac{4^{x}-1}{2^{x}-1}$ $2^{2x}-1 = (2^{x})^{2} - 1$ leading to the difference of 2 squares to factorise!	$13. * \frac{9^x - 3^x - 6}{3^x + 2}$
$= \frac{(2^{x}-1)(2^{x}+1)}{(2^{x}-1)} = 2^{x} + 1$	

ACTIVITIES	Consider other exercises from your Mathematics Textbook
CONSOLIDATION	power exponent base
	Exponential laws: 1. $a^n \times a^m = a^{n+m}$ 2. $\frac{a^n}{a^m} = a^{n-m}$ 3. $(a^m)^n = a^{mn}$ 4. $(ab)^n = a^n b^n$ 5. $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$ 6. $a^0 = 1$ 7. $a^{-n} = \frac{1}{a^n}$ and $\frac{1}{a^{-n}} = a^n$
	Exponential equations: If $a^x = a^k \Rightarrow x = k$
VALUES	Dear learner. MATHEMATICS can OPEN DOORS for you, but only if you work hard at it. You will however, close that door on yourself through your unwillingness to practice every day. Keep up the good work!